这就是自动驾驶的大结局?
技术快讯 · 2021-08-20 12:40

特斯拉Dojo准备用“硅脑”代替“肉脑”...

北京时间8月20日,特斯拉召开一次别开生面的技术发布会,AI DAY,与以往的电池日、新车日不同,这次发布会的重点放在目前电动车上最前沿的技术——自动驾驶、神经网络、超级计算机等。

在AI DAY上,特斯拉着重介绍了在人工智能领域的软件和硬件进展,尤其在神经网络上的训练系统,其中最大的看点就是『Dojo超级计算机』。

特斯拉本次推出的人工智能训练机Dojo D1芯片,是特斯拉全新自研的超级计算机芯片,该电脑将用于车辆自动驾驶数据的运算和分析,能够自动地学习和识别标记道路上的行人、动物、坑洼地等数据,将海量的数据汇聚于Dojo,然后通过自动化深度神经网络训练,以此不断加强算法进化,最终实现以纯视觉为基础的完全自动驾驶(FSD),即特斯拉自动驾驶的最终形态。

据悉,目前单个Dojo D1芯片的演算力已经达到全球第五。纵观全世界的超级计算机的排名,前五中除了第五名的Selene是英伟达的之外,前四的都是国家所有,包括第一的日本『富岳』、第二的美国Summit、第三的美国Sier,以及第四的中国『神威太湖』。

其中,目前排名第一的超级计算机是日本的『富岳』,在机器学习应用上的算力超频之后是2.15EFLOPS,默频是1.95EFLOPS。

值得一提的是,上述前四的超级计算机都是举国之力研发的结果,而特斯拉只是一家新能源车制造公司,能取得这样的成就,特斯拉可谓又一次突破了自己的极限。

什么是『Dojo超级计算机』?

Dojo一词来源于日语,意思是“道场”,翻译成中文应该叫做“训练馆”。

特斯拉特地取此名,可以说目的就是专门训练特斯拉汽车的。来自全球超100万辆特斯拉车辆采集的真实数据将汇聚于此,然后通过Dojo进行深度神经网络训练,以此帮助特斯拉的Autopilot不断进化,最终实现以纯视觉为基础的完全自动驾驶(FSD)。

换一个更好理解的方式,就像是AlphaGo专攻围棋领域一样,经过人工参与调整和标注的训练,只需要几年时间就击败了全球围棋高手,而Dojo可以被看做是为专攻自动驾驶领域的AlphaGo,通过深度学习和分析海量的特斯拉车队数据,Dojo可以自动模拟开车、自动寻找问题最优解,从而完成自我进化。

重点是“无监督训练”和“自我进化”,你可以理解为:Dojo最初不会驾驶车辆,但通过极快的速度学习人类开车(影子模式)和模拟开车(特斯拉为其构建了一个虚拟世界供训练)后,就可以慢慢地在真实世界开车了。

接着随经验的积累,算法的精进,驾驶技术还会越来越娴熟,最终超过人类的驾驶水平。就像AlphaGo最终击败李世石和柯洁一样。

『Dojo超级计算机』有什么能力?

今年6月,特斯拉AI高级总监Andrej Karpathy宣称由特斯拉团队研发的世界第五代超级电脑Dojo即将问世。今天的AI Day发布会则透露了更多的细节。

Dojo D1计算芯片采用了5760个算力为321TFLOPS的英伟达A100显卡,组成了720个节点构建的超级计算机,总算力达到了1.8EFLOPS(EFLOPS:每秒千万亿次浮点运算),有10PB的存储空间,读写速度为1.6TBps。

注意,这还是单个Dojo D1的算力,未来特斯拉还会将多个Dojo D1组成『Dojo超级计算机群』,届时,该超级计算机群的总算力将超过目前世界第一的超级计算机『日本富岳』。

随着Dojo D1推出,毫不夸张的说,它就是目前世界上最强大的人工学习机器,它使用7nm芯片驱动、将50万个训练单元搭建在一起。

在马斯克的规划中,『Dojo超级计算机群』目标算力要达到每秒钟exaFLOP的级别,也就是百亿亿次浮点运算,是现在的一万倍,名副其实的直接最尖端的超级计算机。

那么,Dojo能做什么呢?主要就是自主深度神经网络训练。

特斯拉车辆搭载的摄像头,能够不间断地采集真实的道路数据,然后Dojo D1的人工智能算法,会自动标记这些数据中的物体(包括常规道路、危险道路和其他意外情况)。

之前的大型AI数据集通常需要手动标记,非常耗时费力,而Dojo将配合无监督学习算法(Unsupervised Learning,无需人工对训练数据集进行标注,系统可以自行根据样本间的统计规律对样本集进行分析)。

譬如,可以不给任何额外提示的情况下,仅依据一定数量“狗”的图片特征,就能将“狗”这个物体识别出来。大幅减少特斯拉对于数据人工标注的工作量,进而帮助其数据训练效率实现指数级提升。

这些数据还可以包括信号灯、车道线、动物、行人、天气、马路边缘、指示牌、路灯、桩桶、可行车区域、不可行车区域等等,通过8个摄像完成360度环影,以鸟瞰的方式来展示一个4D视图(三维空间+时间戳)。

不过,特斯拉车辆并不会将每分每秒的视频数据都发送给Dojo,也不会随机发送视频数据,更多的情况是发送一个“案例”(10秒)。比如在Autopilot驾驶时,驾驶员突然介入,改为人工驾驶,Dojo就会分析这个视频案例,试图找出驾驶员中断Autopilot的原因,又或者司机在高速路上突然刹车、堵车时有人插队、雷达与摄像头判断结果不一致、车辆发生事故/险些发生事故等等,将这些具体的案例,交给Dojo来分析处理。

最终,更多的数据通过Dojo的处理,反馈给神经学习系统,实现自动驾驶算法的迭代,而算法的迭代,让Autopilot更加好用,持续反馈更多的数据给Dojo分析,从而实现一个正循环。

目前,特斯拉已经积累了100万个10秒左右的视频,并给60亿个物体贴上了深度、速度和加速度的标签。这些数据每天都还在增加,这就需要特斯拉有一个强大的计算机来处理这些庞大的数据,目前这些数据已经达到了惊人的1.5PB。

以特斯拉百万级的车辆保有量,这个规模的数据收集终端,数据增长速度也是惊人的。这似乎是个天文数字,而特斯拉如果继续依赖纯视觉的自动驾驶方案,不断提高其可靠性,就需要开发出更强大的超级计算机,以追求更先进的AI算法。

一家车企为什么要做超级计算机?

我们前面说到,全世界的超级计算机的排名前五的超级计算机,除了第五名的Selene是英伟达的之外,前四的都是国家拥有的,包括第一的日本『富岳』、美国的Summit和Siera分别位于第二、第三,第四的是中国的『神威太湖』。

这些都是国家级的超级计算机,它们通常是体量巨大、造价高昂的设备,拥有数以万计的处理器,旨在执行专业性强、计算密集型的任务,可完成极端尺度的宇宙模拟、为药物反应预测寻找新途径、发现可用于制造高效有机太阳能电池的新材料等任务,应用于人工智能、生物医药和智慧城市建设等多个领域。

为什么特斯拉,一个电动车企需要研制一台超级计算机?

其实原因,上面已经有所提及。

目前,全球自动驾驶领域主要分为两派,即纯视觉路线与高精地图+雷达路线。后者认为,多传感器与摄像头可以优势互补,更可依靠高精度地图与多激光雷达来完成全自动驾驶。而作为纯视觉路线领头者的特斯拉,则坚定的认为,纯视觉是唯一正确的出路。

马斯克主张采用纯视觉的自动驾驶方法,就是依靠摄像头和机器学习来支持其高级驾驶辅助系统和自动驾驶,而摒弃了激光雷达(LiDAR)、毫米波雷达。

马斯克曾非常自信地说到:“只要人眼能够完成的事情,视觉传感器也应该能够完成。其它的激光雷达都是累赘”。

在特斯拉看来,把激光雷达、毫米波雷达砍掉,是因为多传感器融合,会干扰系统的判断,甚至会造成误判,因为当不同传感器过来的数据冲突的时候,会延长系统处理和判断的时间,甚至会出现误判。

在纯视觉自动驾驶方法下想改进这套自动驾驶AI达到足够的可靠性,自研适应计算需要的超级计算机便极为必要。

特斯拉AI高级总监Andrej Karpathy是计算机视觉和深度学习领域的顶级专家之一,博士毕业于斯坦福AI实验室,主要研究方向是卷积神经网络结构,自然语言处理,以及其在计算机视觉上的应用。

进入特斯拉之后,主要就是为了攻坚特斯拉自动驾驶的难题,而特斯拉非常坚决地采取纯视觉算法路线,这就为数据处理以及神经网络学习提出了巨大的要求。

Karpathy解释道,如果想要让计算机以人类的方式对新环境做出反应,需要一个巨大的数据集,以及超级计算机的处理能力。我们有一个神经网络架构网络和一个1.5 PB的数据集,需要大量的计算。

对我们而言,计算机视觉是使自动驾驶成为可能的基本要素。为了让其更好地工作,我们需要掌握来自车队的数据,训练大量的神经网络,并进行大量实验。

Karpathy讨论了特斯拉人工智能的视觉组件,他指出,特斯拉在设计其汽车的视觉皮层时,是按照眼睛感知生物视觉的方式进行建模的。他还谈到了特斯拉的视觉处理策略多年来是如何演变的,以及现在是如何实现的。Karpathy还提到了特斯拉的“HydraNets”,它具有多任务学习能力。

充分利用从整个车队收集来的数据训练,从而不断改善特斯拉的自动驾驶功能(Autopilot),为下一代自动驾驶人工智能(AI)提供能够更进一步的自主学习的神经网络。

这里的神经网络可以简单理解为通过『仿生学』模拟人类大脑皮层的神经元『沟通学习』的方式进行处理数据,用来实现『类似人类』的学习方式。

这也是为什么这个超算机群取名为Dojo(道场)的原因,在中文里翻译为训练场也非常合适,这个“训练场”就是专门用来训练特斯拉汽车的自动驾驶能力的。

其实早在2019年的Autonomous Day,马斯克就提到过Dojo,称Dojo是能够利用海量的视频(级别)数据,做『无人监管』的标注和训练的超级计算机。

如果认真了解过当年Autonomous Day的朋友,自然会发现,特斯拉推出Dojo超算以及自研芯片,是必然且在规划中的事,也是特斯拉不得不去做的事。

因为按照特斯拉的逻辑,一辆车上要装8个摄像机,十秒内就能产生一百万个视频。这也难怪,需要依赖超级计算机的运算能力。

换句话说,不是特斯拉想要成为人工智能巨头,而是被逼无奈,因为选了纯视觉路线,就需要一个超级计算机的算力与之匹配。结果Dojo一出场,就是要成为世界第一。可以说,这也是马斯克的凡尔赛了吧。

其实关于“视觉算法与AI的关系”这个问题,马斯克曾在推特中回复过,大致意思为:『只有解决了真实世界的 AI 问题,才能解决自动驾驶问题……除非拥有很强的 AI 能力以及超强算力,否则根本没办法……自动驾驶行业大家都很清楚,无数的边缘场景只能通过真实世界的视觉 AI 来解决,因为整个世界的道路就是按照人类的认知来建立的……一旦拥有了解决上述问题的 AI 芯片,其他的就只能算是锦上添花』。

确实,毫米波雷达或激光雷达方案虽然有优势,但是成本更高,而且还有着无法解决的弊端。首先雷达精度、反应速度都不如纯视觉方案,而高精地图则严重限制了可使用自动驾驶的范围。这意味着他们除了需要非常详细的使用地点地图外,还需要所有车道及其连接方式、实时交通灯等额外信息。

但特斯拉的纯视觉方式不同,特斯拉的自动驾驶依靠8个摄像头和背后的Dojo超算,原则上我们可以在地球上任何地方(的道路上)使用。

『Dojo超级计算机』的出现意味着什么?

Dojo的问世,将帮助特斯拉的无人驾驶技术继续提升一个等级,让视觉算法这条路线走的更加深远,它能帮助训练电脑去理解道路画面,通过对视频信息的采集和大量视频信息运算处理,达到仅通过视觉图像便能实现全自动驾驶的目的。

视觉自动驾驶与人类驾驶员的开车方式相似,但最重要的是,计算机更加的可靠。为此,Karpathy也举了几个例子:

首先,人类的反应速度太慢,即使是优秀的驾驶员也要250ms(0.25秒)的反应速度,很多人甚至超过460ms(0.46秒),而电脑的反应速度全部低于100ms(0.1秒);其次,人类驾驶员经常在开车时玩手机,而电脑则会全神贯注,不会一会看看微信,一会刷刷抖音;再来,人类驾驶员的视野范围太窄,并道时如果不回头,则完全看不到位于后视镜盲区的来车,而特斯拉拥有8个摄像头以每秒36帧的速度从车身周围识别信息,涵盖360度视野……

通过海量的案例,Dojo将帮助驾驶员更安全的驾驶车辆,包括利用视觉计算机来纠正人类错误和不安全的驾驶行为。比如:信号灯警告,系统识别到远处的红灯或黄灯,如驾驶员不减速会发出警告;紧急制动场景,系统判断车辆在障碍物前减速度不足或没有减速,会自动帮助车辆制动;躲避障碍,系统侦测到周围有突然出现的动物、行人、车辆、异物等,会自动控制方向盘来进行躲避。

在目前的特斯拉Autopilot中,已经出现过很多因系统失灵而出现的事故,这些可以通过Dojo进行解决,包括不限于:桥下阴影造成的无故刹车;高速跟车时,自动刹车踩得太死;遇到路边占用部分车道停放车辆的规避问题;当车辆检测到前方有行人或者道路变窄的情况时,当驾驶员把油门当做刹车踩下,车辆则不会加速(包括恶意报复社会行为)。

总结起来, Dojo的出现,实现了海量数据的『无监督训练』,大幅度提高神经网络训练的效率。通过用海量的数据锻炼它,就能解决各种『边缘场景』的问题,加快自动驾驶系统的成熟和完善,实现指数级的成长速度。

更关键的是,特斯拉对其软硬件的垂直整合度非常高,不仅不受制于别人,而且能够以此作为服务,给外界提供深度学习的训练业务。

在特斯拉的规划中,全球各地的数据,都会汇集到Dojo超级计算机中心进行处理。当然,这不包括中国的数据,因为中国出台了相关的管理办法,限制这类数据出境(因此,特斯拉在上海建立了数据中心,所以我们也会期待Dojo也能在中国实现)。

这就是自动驾驶的大结局?

对于自动驾驶的科技价值,几乎全球科学家都达成共识,其拥有广泛的应用前景,在包括出租车、代驾、共享汽车、机器人物流等领域都有巨大潜力。

根据中国信通院《2020年全球自动驾驶战略与政策观察》报告显示,自动驾驶具有巨大的社会经济价值,预计2050年将为美国创造大约3.2至6.3万亿美元的经济效益,其中社会福利和消费者福利预计接近8000亿美元。

我国多个地方政府也大力支持自动驾驶技术发展。北京已累计开放四个区县的自动驾驶测试道路共计200条、699.58公里,开放了亦庄和海淀2个自动驾驶测试区域,面积约140平方公里。同时累计为14家自动驾驶企业87辆车发放一般性道路测试牌照。

深圳市也已经先后公开两批无人驾驶路测道路;深圳坪山区的L5级别全无人RoboTaxi已商业化试运营超过100天,并承载了国内首批乘客。此外,包括亚马逊、苹果、三星等国外科技巨头,以及阿里巴巴、百度、腾讯等国内科技巨头都纷纷加入无人驾驶的赛道,想在这个潜力无限的市场里瓜分一块蛋糕。

从技术的角度来看,无人驾驶汽车是一个复杂的软硬件结合的智能自动化系统,运用到了自动控制技术、现代传感技术、计算机技术、信息与通信技术以及人工智能等。从战略意义的角度来看,自动驾驶移动能力更强,能够有效改善交通安全、实现节能减排、消除交通拥堵、促进产业转型。

过去数年,特斯拉一直对外宣传“全自动驾驶”技术,由此也为人们所诟病。因为事实上,特斯拉的“Autopilot”(自动辅助驾驶)以及“Full Self-Driving”(全自动辅助驾驶)都只是“辅助驾驶”功能,并不是真正意义上的“自动驾驶”功能。

因为这样的宣传,导致了不少车主过于相信特斯拉的辅助驾驶功能,因此也导致了很多起令人痛心的安全事故,最近的蔚来也因为NIO Pilot导致的事故登上了热搜。

可见,截止目前,自动驾驶还是一个理想中的概念,离我们的实际使用还有不少的距离,我们现在能用上路的都是“辅助驾驶”,大家为了自己的人身财产安全一定要牢记这一点,切勿过分相信市面鼓吹的“自动驾驶”功能。

目前,特斯拉已开始向纯视觉自动驾驶路线转变,从上月开始,部分在北美生产的特斯拉车型,已停止安装雷达传感器,而全新的FSD Beta V9.0(完全自动驾驶测试版)也将在近期更新,而这一切的背后,都离不开Dojo。

Dojo的到来,意味着我们离真正的“自动驾驶”又近了一步,打开了电动车驾驶AI世界的新入口。

对了,这个技术并不遥远,我们明年可能看到Dojo正式运行。

最后的彩蛋

就在发布会最后,马斯克开着玩笑带来了一位Tesla Bot机器人,他表示,如果Dojo的能力能够如期实现,那么将它至于机器人的内部,同样可以100%模拟人类的性能。在未来,可以为人类社会释放更多的劳动力。

马斯克绝对是一个技术疯子,改变全球能源布局、改变交通出行方式、改变人类脑机交互方式、游历太空、探索火星等等,单凭一个人的意志推动了整个人类社会的科技进步。

通过已量产的产品挣钱,但不会敛财,因为挣到的钱马上用在下一个疯狂的想法,并努力实现它,如果此时说马斯克是后乔布斯时代最伟大的科技创造者,应该没有人会反对吧?

(图/文/摄:皆电 唐科)

相关推荐
我来说两句

海报生成中...

生成失败

长按图片进行分享
关于我们 服务条款
微信 微博 头条
网站备案号:
粤B2-20040647号-22
粤公网安备 44010602003912号

微信公众号: GeekEV